Сетевые черви

Сетевые черви (worm) — это программы, способные к самостоятельному распространению своих копий среди узлов в пределах локальной сети, а также по глобальным связям, перемещаясь от одного компьютера к другому без всякого участия в этом процессе пользователей сети.

Поскольку большинство сетевых червей передаются в виде файлов, основным механизмом их распространения являются сетевые службы, основанные на файловом обмене. Так, червь может рассылать свои копии по сети в виде вложений в сообщения электронной почты или путем размещения ссылок на зараженный файл на каком-либо веб-сайте. Однако существуют и другие разновидности червей, которые для своей экспансии используют более сложные приемы, например, связанные с ошибками («дырами») в программном обеспечении.

Главная цель и результат деятельности червя состоит в том, чтобы передать свою копию на максимально возможное число компьютеров. При этом для поиска компьютеров — новых потенциальных жертв — черви задействуют встроенные в них средства. Типичная программа-червь не удаляет и не искажает пользовательские и системные файлы, не перехватывает электронную почту пользователей, не портит содержимое баз данных, а наносит вред атакованным компьютерам путем потребления их ресурсов. Если червь обладает возможностью повторного заражения, то число его копий растет лавинообразно, и вредоносные программы все более и более загружают процессор, захватывая новые области памяти, отбирая пропускную способность сетевых соединений, пока, наконец, программы легальных пользователей не потеряют возможность выполняться.

При создании типичного сетевого червя хакер, прежде всего, определяет перечень сетевых уязвимостей, которые он собирается использовать для проведения атак средствами создаваемого червя. Такими уязвимостями могут быть как известные, но не исправленные на некоторых компьютерах ошибки в программном обеспечении, так и пока неизвестные никому ошибки, которые обнаружил сам хакер. Чем шире перечень уязвимостей и чем более они распространены, тем больше узлов может быть поражено данным червем.

Червь состоит из двух основных функциональных компонентов: атакующего блока и блока поиска целей.

  • Атакующий блок состоит из нескольких модулей (векторов атаки), каждый из которых рассчитан на поражение конкретного типа уязвимости. Этот блок открывает «входную дверь» атакуемого хоста и передает через нее свою копию.
  • Блок поиска целей (локатор) собирает информацию об узлах сети, а затем на основании этой информации определяет, какие из исследованных узлов обладают теми уязвимостями, для которых хакер имеет средства атаки.

Эти два функциональных блока являются обязательными и присутствуют в реализации любой программы-червя. Некоторые черви нагружены их создателями и другими вспомогательными функциями, о которых мы скажем позже.

Упрощенно жизненный цикл червя может быть описан рекурсивной процедурой, состоящей из циклического запуска локатора и атакующего блока на каждом из последующих заражаемых компьютеров (рис. 1).

В начале каждого нового цикла червь, базирующийся на захваченном в результате предыдущей атаки компьютере, запускает локатор для поиска и формирования списка узлов-целей, пригодных для проведения каждой из специфических атак, а затем, используя средства атакующего блока, пытается эксплуатировать уязвимости узлов из этого списка. В результате успешной атаки червь копирует все свои программы на «новую территорию» и активирует локатор. После этого начинается новый цикл. На рисунке показано, как червь лавинообразно распространяется по сети. Заражение тысяч компьютеров может занять всего несколько минут. Некоторые виды червей не нападают на уже зараженные и/или подвергающиеся атаке в данный момент узлы. Если же такая проверка не предусмотрена в алгоритме работы червя, то в сети случайным образом могут возникать очаги стихийных DoS-атак.

Рис. 1 Экспансия червя в сети

Локатор идентифицирует цели по адресам электронной почты, IP-адресам, характеристикам установленных на хостах операционных систем, номерам портов, типам и версиям приложений.

Для сбора информации локатор может предпринимать действия, связанные как с поисками интересующих данных на захваченном им в данный момент хосте, так и путем зондирования сетевого окружения. Простейший способ получить данные локально — прочитать файл, содержащий адресную книгу клиента электронной почты. Помимо почтовых адресов, локатор может найти на узле базирования другие источники информации, такие как таблицы конфигурационных параметров сетевых интерфейсов, ARP-таблицы и таблицы маршрутизации. Зная IP-адреса хоста базирования и шлюзов, локатор достаточно просто может определить IP-адреса других узлов этой сети. Для идентификации узлов локатор может также использовать ICMP-сообщения или запросы ping, указывая в качестве адресов назначения все возможные IP-адреса. Для определения того, какие приложения работают на том или ином хосте, локатор сканирует различные хорошо известные номера TCP- и UDP-портов. Определив тип приложения, локатор пытается получить более детальные характеристики этого приложения.

Например, пусть некоторая программа-червь имеет в своем арсенале средства для атаки на некоторые версии веб-сервера Apache. Для поиска потенциальных жертв локатор этого червя зондирует узлы сети, посылая умышленно ошибочные запросы к веб-серверу:

GET / НТТР/1.1\r\n\r\n Узел, на котором установлен сервер Apache, отвечает на такой запрос так, как и рассчитывал разработчик червя, то есть сообщением об ошибке, например, это может быть сообщение такого вида:

НТТР/1.1 400 Bad Request
Date: Mon, 23 Feb 2004 23:43:42 GMT
Server: Apache/1.3.19 (UNIX) (Red-Hat/Linux) mod_ssl/2.8.1
OpenSSL/0.9.6 DAV/1.0.2 PHP/4.0.4pll mod_perl/1.24_01
Connection: close
Transfer-Encoding: chunked
Content-Type: text/html; charset=iso-8859-1

Из этого ответа локатор узнает о том, что на узле установлен веб-сервер Apache версии 1.3.19. Для червя этой информации может быть достаточно, чтобы внести данный узел в число целей.

Собрав данные об узлах сети, локатор анализирует их подобно тому, как это делает хакер при поиске уязвимых узлов. Для атаки выбираются узлы, удовлетворяющие некоторым условиям, которые говорят о том, что данный узел возможно обладает уязвимостями нужного типа (для них е! атакующем блоке есть средства нападения). Понятно, что при таком «предположительном» способе отбора целей не всякая предпринятая атака обязательно приводит к успеху. Неудача рассматривается атакующим блоком червя как штатная ситуация, он просто сворачивает все свои действия, направленные на не поддавшийся атаке узел, и переходит к атаке следующей цели из списка, подготовленного локатором. Рассмотрим более подробно, как работает атакующий блок червя. Среди механизмов, позволяющих червю передать свою копию на удаленный узел, наиболее длинную историю имеет уязвимость ошибки переполнения буфера. Этот достаточно распространенный вид уязвимости связан с неправильной работой некоторых программ, когда у них переполняется буфер.

При трансляции программ, написанных на многих языках программирования, в исполняемом (объектном) модуле в сегменте локальных переменных отводится место для буферов, в которые будут загружаться данные при выполнении процедур ввода. Например, в программе веб-сервера должен быть предусмотрен буфер для размещения запросов, поступающих от клиентов. Причем размер буфера должен быть равен максимально допустимой для данного протокола длине запроса. В том же сегменте локальных переменных транслятор размещает команду возврата из процедуры, которой будет передано управление при завершении процедуры (рис. 2, а).

Для правильной работы программы очень важно, чтобы вводимые данные (в нашем примере — запрос клиента) всегда укладывались в границы отведенного для них буфера. В противном случае эти данные записываются поверх команды возврата из процедуры. А это, в свою очередь, означает, что процедура не сможет завершиться корректно: при передаче управления на адрес команды возврата процессор будет интерпретировать в качестве команды то значение из запроса, которое записано поверх команды возврата. Если такого рода переполнение возникло в результате случайной ошибки, то маловероятно, что значение, записанное поверх команды возврата, окажется каким-либо осмысленным кодом. Иное дело, если это переполнение было специально инициировано злоумышленником.

Рис. 2. Схема атаки на уязвимость ошибки переполнения буфера: а — структура адресного пространства программы до поступления злонамеренного запроса; б — после поступления
злонамеренного запроса

Злоумышленник конструирует запрос так, чтобы сервер прореагировал на него предсказуемым и желательным для хакера образом. Для этого хакер посылает нестандартный запрос, размер которого превышает размер буфера (рис. 2, б). При этом среди данных запроса в том месте, которое приходится как раз на команду возврата, злоумышленник помещает команду перехода на вредоносный код червя. В простейшем случае таким вредоносным кодом может быть совсем небольшая программа, переданная в том же запросе.

Итак, атакующий блок червя посылает некорректный запрос уязвимому серверу, его буфер переполняется, код команды возврата из процедуры замещается кодом команды передачи управления вредоносной программе, которая выполняет копирование всех оставшихся программных модулей червя на вновь освоенную территорию.

Хотя рассмотренный подход применим к самым различным приложениям, для каждого типа приложений хакер должен сформировать специальный атакующий запрос, в котором смещение кода команды передачи управления вредоносной программе точно соответствовало бы местоположению команды возврата в процедуру атакуемого приложения. Именно поэтому для червя при проведении такого вида атак так важно получить информацию о типе и версиях программного обеспечения, установленного на узлах сети.

Помимо локатора и атакующего блока червь может включать некоторые дополнительные функциональные компоненты.

  • Блок удаленного управления и коммуникаций служит для передачи сетевым червям команд от их создателя, а также для взаимодействия червей между собой. Такая возможность позволяет хакеру координировать работу червей для организации распределенных атак отказа в обслуживании. Сетевые черви могут быть также использованы для организации параллельных вычислений при решении таких требующих большого объема вычислений задач, как, например, подбор секретного ключа шифрования или пароля.
  • Блок управления жизненным циклом может ограничивать работу червя определенным периодом времени.
  • Блок фиксации событий используется автором червя для оценки эффективности атаки, для реализации различных стратегий заражения сети или для оповещения других пользователей о повреждениях, нанесенных их компьютерам. Результатом работы данного блока может быть, например, список IP-адресов успешно атакованных машин, посланный хакеру в виде файла или сообщения электронной почты.