Протокол разрешения адресов

Как уже было сказано, никакой функциональной зависимости между локальным адресом и его IP-адресом не существует, следовательно, единственный способ установления соответствия — ведение таблиц. В результате конфигурирования сети каждый интерфейс «знает» свои IP-адрес и локальный адрес, что можно рассматривать как таблицу, состоящую из одной строки. Проблема состоит в том, как организовать обмен имеющейся информацией между узлами сети.

Для определения локального адреса по IP-адресу используется протокол разрешения адресов (Address Resolution Protocol, ARP). Протокол разрешения адресов реализуется различным образом в зависимости от того, работает ли в данной сети протокол локальной сети (Ethernet, Token Ring, FDDI) с возможностью широковещания или же какой-либо из протоколов глобальной сети (Frame Relay, ATM), которые, как правило, не поддерживают широковещательный доступ.

Рассмотрим работу протокола ARP в локальных сетях с широковещанием. На рис. 1 показан фрагмент IP-сети, включающий две сети — Ethernetl (из трех конечных узлов А, В и С) и Ethernet2 (из двух конечных узлов D и Е). Сети подключены соответственно к интерфейсам 1 и 2 маршрутизатора. Каждый сетевой интерфейс имеет IP-адрес и МАС-адрес. Пусть в какой-то момент IP-модуль узла С направляет пакет узлу D. Протокол IP узла С определил IP-адрес интерфейса следующего маршрутизатора — это IPi. Теперь, прежде чем упаковать пакет в кадр Ethernet и направить его маршрутизатору, необходимо определить соответствующий МАС-адрес. Для решения этой задачи протокол IP обращается к протоколу ARP. Протокол ARP поддерживает на каждом интерфейсе сетевого адаптера или маршрутизатора отдельную ARP-таблицу, в которой в ходе функционирования сети накапливается информация о соответствии между IP-адресами и МАС-адресами других интерфейсов данной сети. Первоначально, при включении компьютера или маршрутизатора в сеть все его ARP-таблицы пусты.

1. На первом шаге происходит передача от протокола IP протоколу ARP примерно такого сообщения: «Какой МАС-адрес имеет интерфейс с адресом IP1»

2. Работа протокола ARP начинается с просмотра собственной ARP-таблицы. Предположим, что среди содержащихся в ней записей отсутствует запрашиваемый IP-адрес.

3. В этом случае исходящий IP-пакет, для которого оказалось невозможным определить локальный адрес из ARP-таблицы, запоминается в буфере, а протокол ARP формирует ARP-запрос, вкладывает его в кадр протокола Ethernet и широковещательно рассылает.

4. Все интерфейсы сети Ethernetl получают ARP-запрос и направляют его «своему» протоколу ARP. ARP сравнивает указанный в запросе адрес IPi с IP-адресом интерфейса, на который поступил этот запрос. Протокол ARP, который констатировал совпадение (в данном случае это ARP маршрутизатора 1), формирует ARP-ответ.

В ARP-ответе маршрутизатор указывает локальный адрес MACi своего интерфейса и отправляет его запрашивающему узлу (в данном примере узлу С), используя его локальный адрес. Широковещательный ответ в этом случае не требуется, так как формат ARP-запроса предусматривает поля локального и сетевого адресов отправителя. Заметим, что зона распространения ARP-запросов ограничивается сетью Ethernetl, так как на пути широковещательных кадров барьером стоит маршрутизатор.

Рис. 1 Схема работы протокола ARP

На рис. 2 показан кадр Ethernet с вложенным в него ARP-сообщением. ARP-запросы и ARP-ответы имеют один и тот же формат. В табл. 1 в качестве примера приведены значения полей реального ARP-запроса, переданного по сети Ethernet.

Рис. 2 Инкапсуляция ARP-сообщений в кадр Ethernet

В поле типа сети для сетей Ethernet указывается значение 1. Поле типа протокола позволяет использовать протокол ARP не только с протоколом IP, но и с другими сетевыми протоколами. Для IP значение этого поля равно 0x0800. Длина локального адреса для протокола Ethernet равна б байт, а длина IP-адреса — 4 байта. В поле операции для ARP-запросов указывается Значение 1, для ARP-ответов — значение 2.

Из этого запроса видно, что в сети Ethernet узел с IP-адресом 194.85.135.75 пытается определить, какой МАС-адрес имеет другой узел той же сети, сетевой адрес которого 194.85.135.65. Поле искомого локального адреса заполнено нулями.

Таблица 1. Пример ARP-запроса

Поле Значение
Тип сети 1(0x1 )
Тип протокола 2048 (0x800)
Длина локального адреса 6(0x6)
Длина сетевого адреса 4(0x4)
Операция 1(0x1)
Локальный адрес отправителя 008048ЕВ7Е60
Сетевой адрес отправителя 194.85.135.75
Локальный (искомый ) адрес получателя 000000000000
Сетевой адрес получателя 194.85.135.65

Ответ присылает узел , опознавший свой IP-адрес . Если в сети нет машины с искомым IP - адресом, то ARP-ответа не будет. Протокол IP уничтожает IP-пакеты, направляемые по этому адресу. В табл. 2 показаны значения полей ARP-ответа , который мог бы поступить на приведенный в табл. 1 ARP-запрос .

Таблица 2. Пример ARP-ответа

Поле Значение
Тип сети 1(0x1 )
Тип протокола 2048 (0x800)
Длина локального адреса 6(0x6)
Длина сетевого адреса 4(0x4)
Операция 2(0x1)
Локальный адрес отправителя 00E0F77F1920
Сетевой адрес отправителя 194.85.135.65
Локальный (искомый ) адрес получателя 008048ЕВ7Е60
Сетевой адрес получателя 194.85.135.75

В результате обмена ARP-сообщениям и модуль IP, пославший запрос с интерфейса, имеющего адрес 194.85.135.75, определил, что IP-адресу 194.85.135.65 соответствуе т МАС-адрес 00EOF77F192O. Этот адрес затем помещается в заголово к кадра Ethernet, ожидавшего отправлени я IP-пакета.

Чтобы уменьшить число ARP-обращений в сети, найденное соответствие между IP-адресом и МАС-адресом сохраняется в ARP-таблице соответствующего интерфейса, в данном случае — эт о запись:

194.85.135.6 5 - 00E0F77F1920

Данная запись в ARP-таблице появляется автоматически , спустя несколько миллисекунд после того , как модуль ARP проанализирует ARP-ответ. Теперь, если вдруг вновь возникнет необходимость послать пакет по адресу 194.85.135.65, то протокол IP прежде , чем посылать широковещательный запрос, проверит, нет ли уже такого адреса в ARP-таблице.

ARP-таблица пополняется не только за счет поступающих на данный интерфейс ARP-ответов, но и в результате извлечения полезной информации из широковещательных ARP-запросов. Действительно, в каждом запросе, как это видно из табл. 1 и 2, содержатся IP-адрес и МАС-адрес отправителя. Все интерфейсы, получившие этот запрос, могут
поместить информацию о соответствии локального и сетевого адресов отправителя в собственную ARP-таблицу. Вчастности, все узлы, получившие ARP-запрос (см. табл. 1), могут пополнить свою ARP-таблицу записью:

194.85.135.75 - 008048ЕВ7Е60

Таким образом, вид ARP-таблицы, в которую входе работы сети были добавлены две упомянутые нами записи, иллюстрирует табл. 3.

Таблица 1. Пример ARP-таблицы

IP-адрес МАС-адрес Тип записи
194.85.135.65 00E0F77F1920 Динамический
194.85.135.75 008048ЕВ7Е60 Динамический
194.85.60.21 008048ЕВ7567 Статический

В ARP-таблицах существует два типа записей : динамические и статические. Статические записи создаются вручную спомощью утилиты агр и не имеют срока устаревания, точнее, они существуют до тех пор, пока компьютер или маршрутизатор остается включенным.

Динамические записи должны периодически обновляться. Если запись не обновлялась в течение определенного времени (порядка нескольких минут), то она исключается из таблицы. Таким образом, в ARP-таблице содержатся записи не обо всех узлах сети , а только о тех, которые активно участвуют в сетевых операциях. Поскольку такой способ хранения информации называют кэшированием, ARP-таблицы иногда называют ARP-кэшем.

Совсем другой способ разрешения адресов используется в глобальных сетях, в которых не поддерживается широковещательная рассылка. Здесь администратору сети чаще всего приходится вручную формировать и помещать на какой-либо сервер ARP-таблицы, в которых он задает, например, соответствие IP-адресов адресам Х.25, имеющих для протокола IP смысл локальных адресов. В то же врем  сегодня наметилась тенденция автоматизации работы протокола ARP и в глобальных сетях. Для этой цели среди всех маршрутизаторов, подключенных к какой-либо глобальной сети, выделяется специальный маршрутизатор, который ведет ARP-таблицу для всех остальных узлов и маршрутизаторов этой сети.

При таком централизованном подходе вручную нужно задать для всех узлов и маршрутизаторов только IP-адрес и локальный адрес выделенного для этих целей маршрутизатора.

При включении каждый узел и маршрутизатор регистрирует свои адреса в выделенном маршрутизаторе. Всякий раз, когда возникает необходимость определения по IP-адресу и автоматически получат ответ без участи я администратора. Работающий таким образом маршрутизатор называют ARP-сервером.

В некоторых случаях возникает обратная задача — нахождение IP-адреса по  известному локальному адресу. Тогда в действие вступает реверсивный протокол разрешения адресов (Reverse Address Resolution Protocol, RARP). Этот протокол используется, например, при старте бездисковых станций, не знающих в начальный момент времени своего IP-адреса, но знающих МАС-адрес своего сетевого адаптера.